Realizing the Full Value of Industrial Internet and Data Analytics in LNG Facilities

Jaleel Valappil, David Messersmith
Bechtel Oil, Gas and Chemicals

Kelly Knight
Bechtel Nuclear, Security and Environmental
Presentation Overview

- Introduction to Industrial Internet (IIoT)
- Key Application Areas in LNG Operations
 - Process monitoring, Predictive maintenance, Process optimization
- Leveraging Existing Assets
- Benefits of EPC Phase Implementation
- Case Study in Data Analytics
 - LNG plant amine system monitoring
Introduction to Industrial Internet/Data Analytics

- **Digital Transformation Enabled by**
 - Cloud computing
 - Decreasing cost of sensors, storage, bandwidth
 - Big data analytics and Sensor technology

- **Integration of**
 - Physical plant and Digital information
 - IT (ERP/CRM etc.) and OT (DCS/PLC etc.)

- **Cybersecurity**
 - IT and OT security challenges
Industrial Internet Domains/Solutions
- Includes new ways of using existing technology
- OEM, Automation provides and others

Sensors
- Wireless sensors/Intelligent sensors
- Vibration Monitoring
- Virtual sensors

Big Data Analytics
- Ability to deal with large datasets
- Higher resolution/Storage
- Better analytics – Machine learning
Applications of Industrial Internet

Applications Related to LNG Facility Operation

- Predictive Maintenance
- Process Optimization
- Anomaly/Fault Detection
- Exploratory/Statistical Analysis

Data Analytics

Value

Complexity
LNG Process/Equipment Monitoring

- Tracking Key Performance Indicators (KPI) for LNG
 - Efficiency, Production, Yield, Quality
- Condition and Performance Monitoring of Equipments
- Process Control Monitoring
 - Ensure loops are in auto and working

- Abnormal Situation management/Anomaly or Fault Detection
 - Enhancement of safety
 - Reduce plant downtime
 - Early detection of anomalies – Operator intervention
 » Fault diagnosis important
LNG Process/Equipment Monitoring - 2

- Approaches to Fault/Anomaly Detection

- Numerous Application Areas in LNG
 - Amine system and dehydrators
 - Heavies/Scrub Columns
 - Plate and Frame and Other Exchangers
Asset Management - Predictive Maintenance

- Continuous Monitoring and Prediction of Equipment Conditions
 - 82% random failure pattern

- Benefits Compared to Reactive/Preventive Maintenance (ARC)
 - Reduction in maintenance cost (50%)
 - Reduction in unexpected failures (50%)
 - Increase in MTBF (30%)
 - Increase in availability (30%)
Asset Management - Predictive Maintenance - 2

Failure – Latent Error and Enabling condition
- Methodologies for Predicting Failure
 - Engineered algorithms
 - Supervised learning for prognostics
 » Models for Remaining Useful Life (RUL)
 » Model for probability of failure in time
 - Unsupervised learning techniques
 » Limited failure history

- Application Areas in LNG includes
 - Turbomachinery
 - Heat exchangers/Valves etc.
LNG Plant Optimization

- LNG Process Optimization Current Status
 - Advanced Process Control (APC)
 - Supervisory Systems

- Real Time Optimization (RTO) not Common

- Opportunities from Industrial Internet
 - Supervisory optimization (Less frequent)
 - Smaller units/equipments that are currently ignored
 - Enterprise-wide optimization (Multiple facilities)
Typical Application Areas in LNG

- Maximizing Plant Efficiency
 - Optimum Process Conditions – MR compositions, Other operating parameters
 - Operating point for compressors to enhance efficiency
 - Optimal load distribution between compressors

- 5-15% power reduction reported in studies
 - 12.9% (Wang et al., 2012)
 - 4.5% (Alabdulkarem et al., 2011)

- Energy Optimization for Utilities
Existing Assets for Data Analytics

- Process Knowledge Key to Successful Applications
 - Selecting right variables
 - Selecting right objectives for optimization

- Digital Plant Information
 - Digital repository of plant information
 - EPC project data for greenfield facilities

- Existing Control Infrastructure
 - Working with DCS/PLC systems
 - Starting with supervisory levels and gradual move to base layer
LNG Simulation Models and Digital Twins

Existing Assets
- Steady State/Dynamic Models
- Operator Training Simulator
- Computational Fluid Dynamics Models

Applications
- Selection of Variables/Causality
- Model Based Optimization
- Boosting Data Models

Digital Twins for LNG Plants

IIoT

Process Model/OTS

3D Models

Digital Data

Equipment Model
EPC Phase Implementation of IIoT

- **Benefits of Early Implementation**
 - Preparing sensors/IT infrastructure
 - Configuring models based on process/project information
 - Testing during startup and commissioning

- **Avoiding Retrofits after Commissioning**
Case Study – Anomaly Detection

- Monitoring of Amine System in LNG Plant
 - Amine system performance important – CO₂ removal

- Anomaly Detection Method used
 - Identify abnormal operation considering group of variables
 - Statistical approach using data

- Operating Data from Plant after Startup
 - About 320 tags for amine system
 - Seven months of operation

- Performed in Offline Mode
Anomaly Detection – System Set-up

- Big Data Analytics Framework/Tools
 - Splunk - Machine data database and indexer
 - Prelert – Anomaly detection tool
 - Neo4j – Graphical database

- Design Data from Smartplant Instrumentation
 - Captures relationships among tags, equipment
 - Enables setup of monitoring system with minimal effort
Anomaly Detection - Methodology

- Predictive Model Consists of Statistical Probability Distribution
 - Bayesian distribution modeling
 - Fit is determined by unsupervised machine learning
 - Distributions have different shapes (Not just bell curves)
 - Distributions used to determine what is unexpected (anomalies)

- Anomaly Score – Normalized Probability Score
 - Score measures level of unusualness
 - Output has no false positives or negatives
Anomaly Detection – Approaches

Three Different Approaches

- All amine tags used to calculate anomaly scores (unit-wide)
- Individual equipment tags to calculate separate anomaly scores
 – Clustering based on Smartplant Instrumentation
- Individual groups to calculate separate anomaly scores
 – Obtained from process understanding
Case Study – Scenario 1

Increase in CO₂ to >100ppm Caused by Amine Regenerator Operation

- Reflux failure leading to increase in regen column pressure
Case Study – Scenario 2

Increase in CO2 to >100ppm Caused by Increase in Feed Gas CO₂ Concentration

- Column differential pressure increases

Feed Gas CO₂

Anomaly Score - Absorber
Column Diff. Pressure
CO₂ Composition

Anomaly Score (see legend for units)
Case Study – Root Cause Analysis

- Ability to Quickly Evaluate the Root Cause
 - Equipment contribution to anomaly score
 - Further drill down to particular tag

![Graph showing anomaly score and influences by field]
Thank You

and

Questions