

Achieving "Carbon-Neutrality" faster by linking enzymatic carbon capture technology with renewable geothermal energy

Tiziano De Paolis

Head of CCUS Solution Management Saipem

Paper Overview

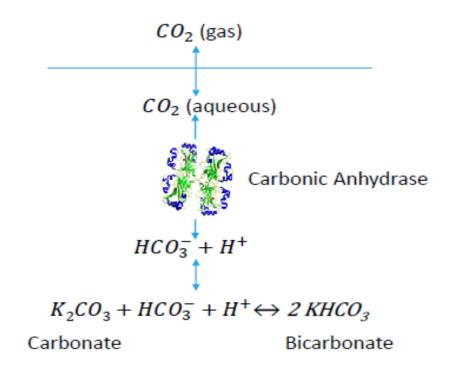
Saipem and Gruppo Hera cooperation

Authors

- Tiziano De Paolis, Head of CCUS Solution Management, Saipem
- Stefano Tondini, Energy from Waste Plants Manager, Gruppo Hera
- Francesca Dornetti, Head of Industrialized Solutions Project Management, Saipem
- Richard Surprenant, Carbon Capture Technologies BD Manager, Saipem

Index

- ☐ Enzymatic Carbon Capture Technology
- ☐ Integration with Low-Grade heat
- ☐ Waste-to-Energy application and Synergies with


Geothermal energy

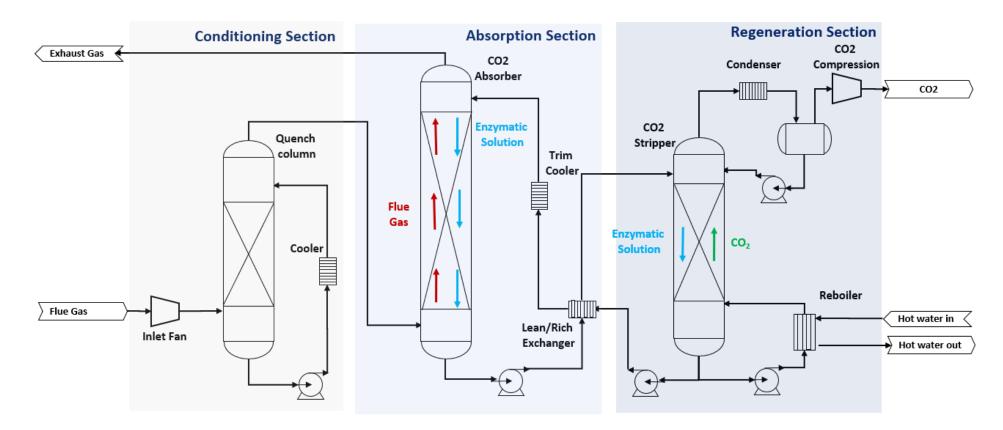
Principles of the solvent-based technology

- \square K₂CO₃ alone is an attractive solvent but is kinetically slow
- Enzyme accelerates the hydration of CO₂ in K₂CO₃

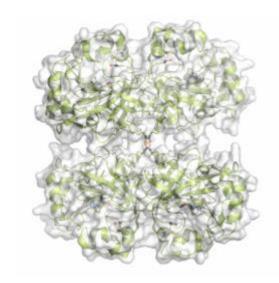
Operating conditions

- Absorption at atmospheric conditions
- Solvent regeneration lower than 85°C

A natural enzyme to enhance the CO₂ capture



Process Flow Diagram



Main benefits

Carbonic Anhydrase enzyme

Non-toxic and environmentally friendly solvent, no risks of aerosol emissions Energy consumption using low-grade heat

Simplified equipment using standard components

No need of flue-gas compression

Optimized CAPEX, OPEX and maintenance costs

St. Félicien (Quebec, CA) demo Plant

- Start-up in 2019
- 30 TPD CO₂ design capacity
- Utilize mill's low-grade waste heat for process
- CO₂ captured from Pulp Mill
- CO₂ routed to a Greenhouse at food-grade for reuse

Solution Industrialization − 200 tpd nominal capacity − BluenzymeTM-200

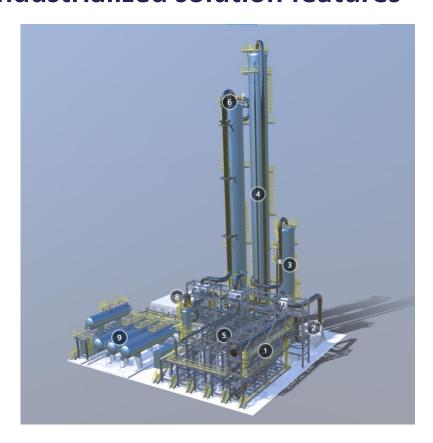
Plug-and-Play concept

Minimizing the site works and fast module hook-up

Modular design

Compatible with truck transportation

Pre-engaged supply chain to support delivery and de-risk schedule



Industrialized solution features

1 - INTERCONNECTING MODULE

Ensures the connection with the host plant flue gas and utilities.

2 - FLUE GAS BLOWER

Conveys the flue gas from the emitter.

3 - QUENCH COLUMN

Ensures pre-scrubbing and pre-cooling of flue gas exiting from the emitter.

4 - ABSORBER

The core of CO2 capture ensures a high capture rate (up to 95%) using a non-toxic and non-volatile solvent activated by enzymes.

5 - PLANT MODULES

Allocates equipment, pipes, instruments and cables in truckable-sized structures, easily deliverable to the site.

6 - STRIPPER

Allows Enzymatic Solution to be regenerated using simply hot water rather than steam

7 - CO₂ COMPRESSOR

To deliver the captured CO₂ to its destination.

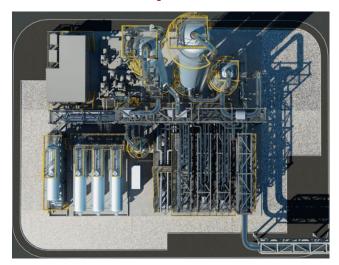
8 - ELECTRICAL & INSTRUMENTATION CONTAINERS

Optional elements which are required to work in island mode. They are removed when the existing plant systems have some spare room, reducing plant footprint and site impact.

9 - STORAGES

Optional section, to drain the solvent circuit. Replaceable with non-stationary storage, reducing plant footprint and site impact.

"Ready-made" product for a safe and fast-track brownfield installation



A "Ready-made" solution for a safe and fast-track brownfield installation

Layout

Less than 900 m² for the main process facilities

Installation

18-month delivery

Low-Grade Heat Integration

Energy integration solutions accelerate the run towards carbon neutrality

Direct Heat Recovery

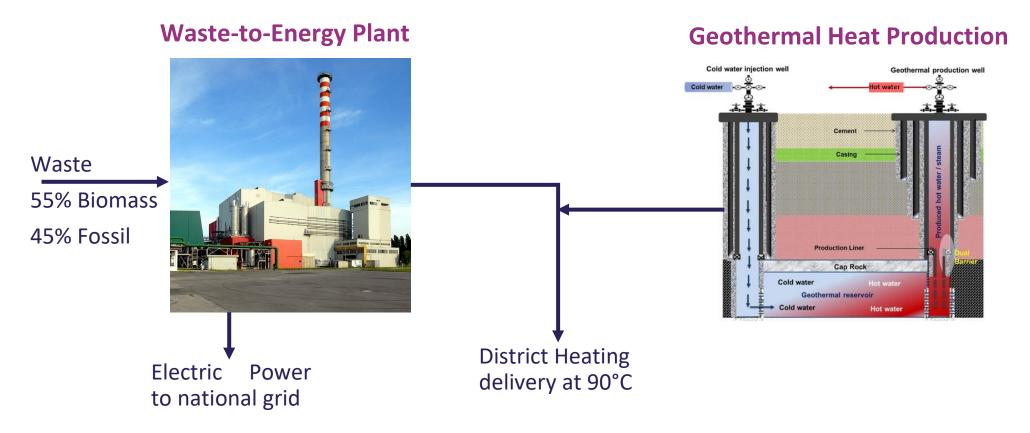
Default solution using residual low-grade heat from host plant reducting/avoiding heating costs

Heat Pumps

The technology is suitable for Standard Heat Pump applications to optimize energy efficiency of Power and District Heating production

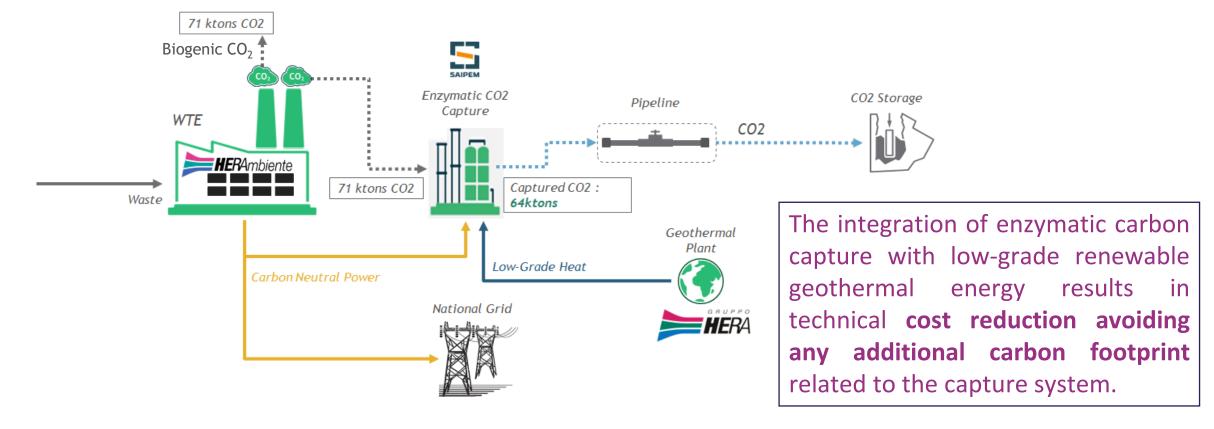
Geothermal Energy

The direct utilization of low-grade Geothermal heat supply avoids additional carbon emissions related to the Carbon Capture facilities



WtE application and Synergies with Geothermal energy

WtE Plant Overview and Geothermal source



WtE application and Synergies with Geothermal energy

WtE decarbonization Strategy

WtE application and Synergies with Geothermal energy

Conclusions

- New sustainable aspect for WtE with removal of the fossil CO₂, improving the social concept of a facility that has no environmental impact;
- The use **non-toxic and non-volatile natural solvent** avoids the handling of the inorganic toxic chemical product, facilitating the permitting process;
- Utilizing geothermal heat provides benefits for both WtE and district heating plants, providing a renewable heating source for CO₂ capture and contribute to decarbonise the district heating process;
- The integration of geothermal heat with CO₂ capture reduces the relevant technical costs without additional carbon footprint.

Q&A Thank you

